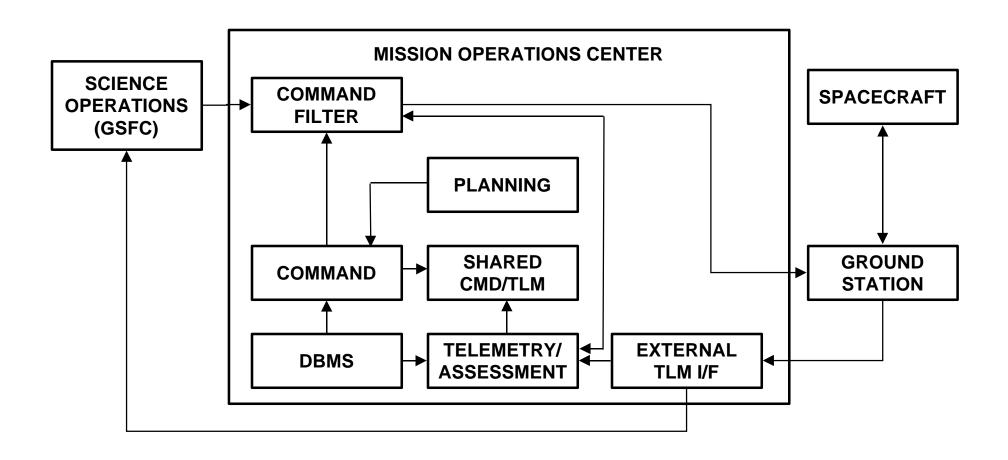

STEREO Software

Ben Ballard


STEREO Software "Sub" system

Alternate System Configuration

Mission Operations Software

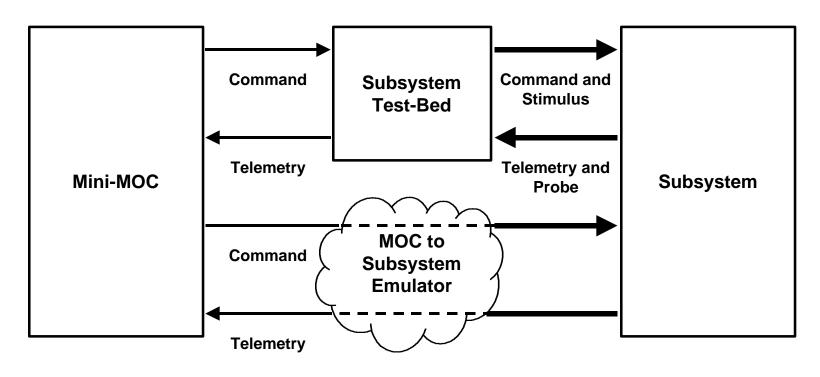
Mission Operations Functions

• Functions:

- Support Interface with Science Operations (GSFC)
 - Receive instrument command loads
 - Distribute instrument science data
- Maintain Spacecraft command and telemetry dictionaries
- Support Spacecraft activity planning
- Uplink all commands to spacecraft via ground station
- Receive all downlink from ground station
- Assess and archive spacecraft telemetry data

TIMED Implementation

Based on EPOCH 2000 COTS product, with APL customization

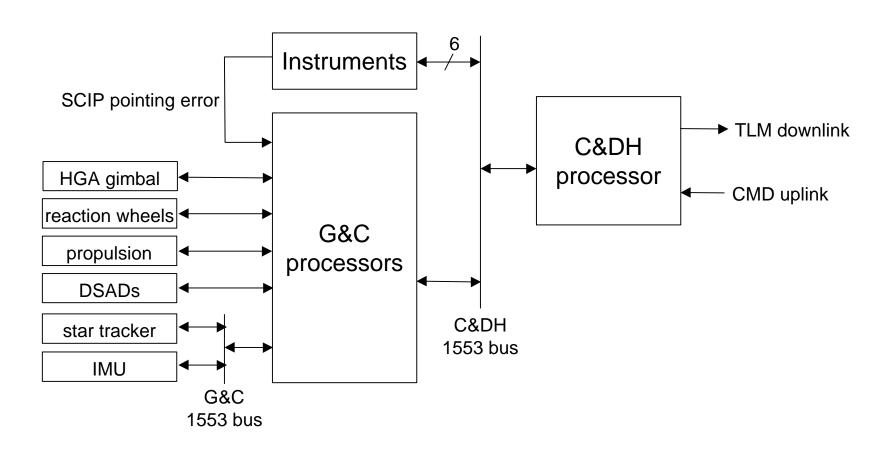

Mini-MOC Functions

- The Mini-MOC will support 2 subsystems: C&DH, and G&C
- The Mini-MOC
 - is a stripped-down version of the MOC, available early in the program, for use in subsystem testing.
 - can send both GSE (Ground Support Equipment) and spacecraft subsystem commands.
 - can receive, decommutate, display, alarm, and archive both
 GSE and spacecraft subsystem telemetry.
 - uses the same command and telemetry dictionaries,
 command procedures, and display pages as the MOC.

Ben Ballard 11/19/1998

6

Mini-MOC Configuration



Key:
TCP/IP socket over ethernet
Hard-wired

Spacecraft Emulator

- A tool for use of instrument developers to verify interfaces with spacecraft
- PC-based emulator, with:
 - 1553 interface with driver implementing spacecraft bus schedule
 - software allowing command transmission to instrument, telemetry reception, monitoring, display, etc.
- TIMED provided one emulator to each instrument developer

Flight Software Environment

C&DH Differences From TIMED

- Single string processor implementation
- 7 instruments instead of 4
- High speed RS-422 serial interface for SCIP
- Max. total science collection rate ~410 kbps. instead of 55 kbps.
- Max. downlink rate 200-800 kbps. (TBD) instead of 4 Mbps.
- Collection and downlink of broadcast data

C&DH Requirements - 1

- Support science data collection
 - Allow instruments to generate their max data rate simultaneously
 - SCIP 400 kbps
 - HI 7 kbps
 - EPD 0.2 kbps
 - Mag 0.2 kbps
 - RBT 0.2 kbps
 - SWPA 0.2 kbps
 - Allow variable instrument bandwidth allocation
 - Support a real-time science downlink capability
 - Label science and attitude history packets so they can be identified and routed to GSFC without inspection

C&DH Requirements - 2

- Support 8 Gbit recorder w/simultaneous record, playback
 - dump entire recorder in 3 hours...
 - while continuing to record new data from science instruments at their maximum rates
- Support CCSDS-compatible uplink/downlink
- Support 500 bits/sec. "broadcast" telemetry mode
- Maintain and distribute time to 0.1 sec accuracy
- Allow for software upgrade capability
- No C&DH data compression is required

C&DH Software Baseline

TIMED architecture

- reuse requirements document as starting point
- 12 MHz. Mongoose running Nucleus+ RTOS
- same approach to uplink, downlink, 1553 bus management
- add drivers for RS-422 high speed link
- delete instrument daily packet quota enforcement
- power management requirements?

Load estimates:

- CPU usage: 25% (based on TIMED estimates updated for STEREO)
- Memory: TIMED is under 30% usage of code space (RAM and flash), assuming 50% of memory is available for code

C&DH Loading Estimate - 1

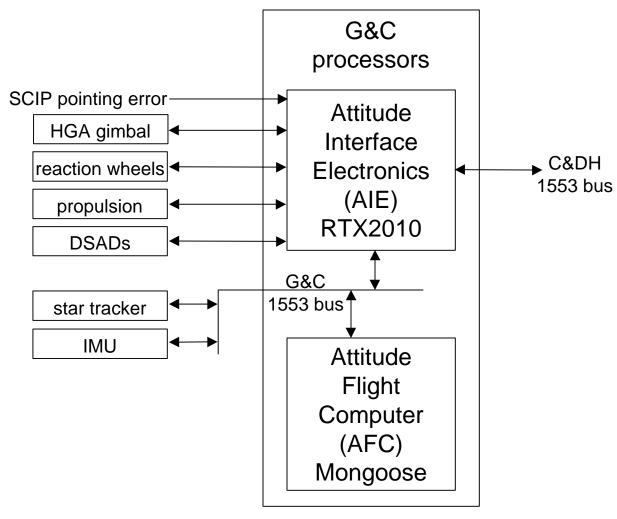
STEREO C&DH Load Estimates

Original from Steve Williams' TIMED CDR info. Italics indicate changes from TIMED estimates

	Exec Freq	msec per	msec per	
Software Module	(Hz.)	exec	sec	Assumptions
Command Processing				
Command Buffer Ready ISR	2	0.1	0.2	~ 2 times / sec. with continuous 100 bps uplink
Perform Coding Layer Checks	2	0.1	0.2	Will occur after a Command Buffer Ready ISR
Perform Transfer Layer Checks	1	0.2	0.2	Assumes 1 transfer frame received per sec.
Perform Segmentation Layer Checks	1	0.2	0.2	Executes after Transfer Layer Checks
Perform Packetization Layer Checks	1	0.2	0.2	Assumes 1 CMD packet assembled per sec.
Check for Command Packet Timeout	1	0.15	0.15	
Check C & DH Commands	1	1	1	Assumes CMD packet contains C & DH commands
Execute C & DH Commands	9	0.2	1.8	Assumes execution of 9 relay commands per sec.
Relay Command Complete ISR	9	0.1	0.9	Can execute no more than 9 relay commands / sec.
Input Code Block	2	0.15	0.3	
1553 Bus Management				
Build 1553 Minor Frames	16	2	32	Double TIMED loading for more instruments
Process 1553 Minor Frame Results	16	2	32	Double TIMED loading for more instruments
PCI Bus Management				
"TIMED" PCI Transaction Complete ISR	50	0.1	5	Assumes 50 "TIMED" PCI transactions per second
SCIP PCI Transaction Complete ISR	15	0.1	1.5	15 blocks, 2000 16-bit words each = 480000 bps
Manage GNS Interface	0	0.2	0	GNS eliminated in STEREO
C&DH Data Management				
Input Housekeeping Data	1	0.1	0.1	
Form C & DH Telemetry Packets	1	1.2	1.2	
Form Housekeeping Telemetry Packets	1	1	1	
Update Data Summary Table	1	0.5	0.5	
Battery Management				
Perform Peak Power Tracking	16	0.3	4.8	
Perform Coulometry	16	0.15	2.4	

C&DH Loading Estimate - 2

STEREO C&DH Load Estimates


Original from Steve Williams' TIMED CDR info. Italics indicate changes from TIMED estimates

	Exec	msec	msec	
	Freq	per	per	
Software Module	(Hz.)	exec	sec	Assumptions
Autonomy Processing				
Evaluate Arithmetic Functions	1	6.4	6.4	Assumes 100 usec. for each of 64 floating point computations and comparisons
Evaluate Autonomy Rules	1	51.2	51.2	Assumes 100 usec. to evaluate each of 512 rules
Evaluate Time-tagged Rules	1	25.6	25.6	Assumes 50 usec. to evaluate each of 512 rules
SSR / Downlink Management				
Parse Telemetry Packets	64	0.25	16	TIMED packet generation rate multiplied by 8
Manage SSR Recording	64	0.25	16	TIMED SSR recording multiplied by 8
Start SSR Playback	1	0.2	0.2	
Continue SSR Playback	1	0.2	0.2	
Check SSR Memory	16	1	16	
SSR ISR	1	0.1	0.1	Normally 1 every 60 seconds during SSR playbacks
Manage Real-time Downlink	2	0.25	0.5	TIMED real-time downlink rate divided by 5
Manage "Broadcast" Downlink	1	0.25	0.25	New requirement for STEREO
System Functions				
1 PPS ISR	1	0.2	0.2	
1 Hz Timer ISR	0	0.1	0	Not be executed in normal operation
16 Hz Timer ISR	15	0.1	1.5	
Power System Timer	16	0.1	1.6	
Interrupt Latencies - Timer 0	100	0.1	10	100 interrupts per second, @ 100 usec. response
Interrupt Latencies - user interrupts	150	0.04	6	125 interrupts per second, @ 40 usec. response
Context Switching	125	0.04	5	100 context switches, @ 40 usec. per switch
Correctable Error ISR	0	0.1	0	Not normally executed
Scrub C & DH Memory	16	0.4	6.4	
Total Estimated C&DH Loading	24.9%			

G&C Requirements

- "Just like TIMED, except" -
 - Single string processor implementation
 - Simpler safe modes and transitions
 - No torque rods
 - Propulsion system added
 - High gain antenna gimbal added
 - Other system components not yet selected
 - SCIP has tight pointing, jitter, and knowledge requirements
 - SCIP provides pointing error signal to G&C system
 - · RBT antennas will make spacecraft mechanically flexible
 - Control loop processing requirements TBD
- I.e., G&C requirements are not necessarily very similar to TIMED, and are not yet well known

G&C Processor Baseline (TIMED)

G&C Software Baseline

TIMED software architecture

- 12 MHz. Mongoose running Nucleus+ RTOS, with RTX2010 based Attitude Interface Electronics
- Reuse requirements documents as starting point
- Reduce or eliminate attitude processing in AIE
- Use RTW again to automatically generate attitude "c" code for AFC

Load estimates:

- CPU usage: AIU usage about 25%; AFC unmeasured
- Memory: TIMED AIU uses over 85% of RAM; AFC uses <30% of RAM allocated for code

TIMED Memory Estimates

	EE/Flash (K	bytes)		RAM (Kbytes)			
C&DH	Usage	Used	% used	Usage	Used	% used	
	Boot segment:180Kbytes	256	6.3%	OS, code, large buffers,	300	14.6%	
	actually used of 256K			variables, constants, etc.			
	OS, code (2 copies)	600	14.6%	command macros	512	25.0%	
	cmd macros (2 copies)	1024	25.0%	autonomy and time-tagged rules	256	12.5%	
	autonomy rules (2 copies)	512	12.5%	Total used	1,068	52.1%	
	Total used	2392	58.4%	Total available	2,048	100.0%	
	Total available	4096	100.0%				
AFC	Usage	Used	% used	Usage	Used	%used	
	Boot segment:180Kbytes	256	6.3%	OS, code (with RTW)	300	14.6%	
	actually used of 256K			, ,			
	Parameters	512	12.5%	initialized data	40	2.0%	
	OS, code (with RTW)	512	12.5%	uninitialized data	200	9.8%	
	Total used	1280	31.3%	Total used	540	26.4%	
	Total available	4096	100.0%	Total available	2048	100.0%	
AIU	Usage	Used	% used	Usage	Used	%used	
	Code	81	63.3%	Page 0	53	41.4%	
	Parameter blocks	4	3.1%	Page 1	57	44.5%	
	Total used	85	66.4%	Total used	110	85.9%	
	Total available	128	100.0%	Total available	128	100.0%	

Trade Studies for Phase A/B - 1

- Simplified architecture for G&C processor(s)
 - + possibly replace both processors with one
 - + reduce total software effort
 - + use "modern" development environments
 - debug "modern" development environments (again...)?
 - it seems the "ultimate" rad-hard flight processor is always "right around the corner, but not quite in time for this project...."

Trade Studies for Phase A/B - 2

- Variable length packets
 - Eliminate hardware dependencies on fixed length packets so it won't be too late if study favors variable length packets
 - Study whether benefits of variable length packets outweigh costs
 - TIMED Mission Ops people would have preferred variable length (EPOCH 2000 fully supports variable packet sizes)
 - Fixed length restriction was a problem for TIMED experimenters (especially difficult for TIDI)
- Selective SSR Playback to allow direct replay of missed transfer frames without playing back a whole segment
- Operating systems, tools
 - Nucleus+ (TIMED RTOS for Mongoose), VxWorks, VRTX
 - TASKING (TIMED development tools for Mongoose), gnu

Technology Insertion Candidates

- Use of commercially available file system extensions to Real Time Operating System
 - Proposal being submitted to NASA for additional funding
 - Code and parameter upload and download operations become simple file transfers
 - Easy, familiar model for Mission Operations
 - File volumes in RAM, EEPROM/flash, and on the SSR can provide convenient local volatile and non-volatile onboard storage
- Variable length packet uses
 - flexible telemetry updates
 - more efficient use of downlink bandwidth (instrument and spacecraft

Software Cost Drivers

- Development of end-to-end architecture before implementation begins, including requirements of:
 - Experimenters and Mission Data Center (via GSFC interface)
 - Mission Operations
 - Integration and Test
 - Flight Hardware
 - Flight Software
- Collocation of software developers with hardware designers
- "Zero-based" requirements to reduce testing costs
- Software reuse (architecture, designs, staff experience, code, test procedures) allowed by various configurations